Search

Fixing satellites in space

Many beneficiaries

NASA sees robotic servicing as a way to extend satellite lifespans, as well as an opportunity to make more frequent updates to technology already in space. The agency also envisions a robust U.S. commercial satellite servicing industry, which it intends to help jumpstart by sharing satellite servicing technologies with interested companies. Additionally, NASA intends to use the satellite servicing technologies it is currently developing to drive exploration missions — such as the Journey to Mars — and future in-space assembly of large observatories that can aid in the search for life outside of Earth.

“Space is a critical infrastructure for all of us today, and it’s something we often forget about because it’s the ‘invisible infrastructure.’ We see the roads, the electricity, and the water. We see all of these infrastructures, we don’t see the space one,” says Steve Oldham, senior vice president of strategic business development at SSL. “But space is now critical [for] GPS, weather forecasting, news gathering, television…but it’s the only infrastructure we have that isn’t serviced. It’s a throwaway culture.”

Oldham believes servicing will eventually become a day-to-day operation in space. And once it becomes routine, it will allow governments and companies to launch communications or exploration spacecraft in parts for robots to assemble in space.

“We have all these ideas about going to Mars, but it requires a lot of infrastructure to get there, and you don’t have the launch capability here on Earth to launch that type of enormous infrastructure,” Oldham says. “What space servicing and space robotics allow you to do is launch your exploration missions in parts and then combine them together.” Not to mention repairing them if something breaks on the multi-million-mile trip.

Robotic assembly will also help governments and commercial companies construct larger, more capable satellites, he says. “We can build satellites [whose parts] fit in two launch vehicles, join them together in space, and get a more capable satellite: more bandwidth, more power for communication, more sensors for Earth observation, for weather measurements, all those kinds of things.”

This robotic “roadside assistance” will be able to refuel, inspect, and repair satellites in space using advanced robotic arms that are even more mobile than human arms. These arms can perform tasks like using a specialized tool to clip the lock wire that holds a satellite’s fuel cap in place, inspecting a satellite from inches away using cameras, or updating and assembling satellite parts in orbit.

The robotic arms are part of an ecosystem of intertwined technologies, according to Laurie Chappell, a robotics expert and director of business development for emerging markets at SSL. Her experience includes developing a way to operate the space station’s robotics from the ground, so that astronauts onboard could focus on other responsibilities. “What we’re doing with the different satellite architectures is applicable not only to the geo[synchronous] communications satellites, but also to the Earth science missions.”

Chappell and engineer John Lymer, the chief architect for robotics and automation at SSL, are a husband-and-wife robotics team. Lymer was the chief engineer for robotics on the ISS; he also worked with the Canadian Space Agency to develop the state-of-the-art Canadarm, a robotic arm that can capture and repair satellites or hold astronauts.
 
The tasks performed by the servicing robots “will be mostly automatic, but when we get to the really tough problem of actually cutting the lock on a fill-and-drain valve, there will be a tool and a robot in space, and [a human] operator on the ground, and they’re going to be on joysticks, trying to get that tool in there and poking around a bit,” Lymer says.

The robots can perform tasks that otherwise require an expensive and resource-intensive astronaut mission, while also accessing areas in space that are hard or impossible for humans to visit. “The robots aren’t just there for the robots’ sake. They’re there because they’re enabling something different,” Lymer says.

Let's block ads!(Why?)

Read Again Fixing satellites in space : http://ift.tt/2CjyjdO

Let's block ads! (Why?)



Bagikan Berita Ini

Related Posts :

0 Response to "Fixing satellites in space"

Post a Comment

Powered by Blogger.